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Objective

Proof of concept for an onboard system for cloud

detection using High Performance Reconfigurable

Computers (HPRCs)

Targets Landsat 7 ETM+ and ACCA algorithm to:

0 Determine an almost practical bounds on the

potential performance of HPRCs

0 Gain an insight into the system level

programmability and performance issues
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Motivations

Why Cloud Detection?

0 Can render data useless in land-
use/land cover studies

0 Critical in weather and climate
studies

Why On-Board ?

0 Reduction of communication
bandwidth

0 Reduce cost and complexity of
ground processing systems

0 Enable autonomous decisions

Why Reconfigurable?

0 Flexibility is Important for Space

0 High Performance, ..

Airborne

Spaceborne
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Remote Sensing

Multi-Spectral Imagery
0 A few to 10’s of bands

(LANDSAT  8 bands,

MODIS  36 bands,

SeaWiFS  8 bands,

IKONOS  5 bands)

Hyperspectral Imagery
0 100’s-1000’s of bands

(AVIRIS  224 bands,

AIRS  2378 bands)
Multispectral / Hyperspectral Imagery

Comparison
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LandsatLandsat 7 7

ACCA (Automatic Cloud Cover Assessment)

for  Landsat 7 ETM+

0 ETM+ has 8 bands

0 ACCA algorithm uses Band2- Band6

0 Threshold based - 8 filters (tests)

0 Three-Step approach

Landsat 7 AND Cloud Detection

ETM+

Normaliz

ation

Pass One

Pass Two

Calibration 

Constants

Landsat 7 Quantized 

Raw Data



El-Araby, GWU 8June 27, 2006ESTC 2006

Idea is based on the observation that clouds are

Highly Reflective and Cold:
0 Highly reflective (in the visible, near- and mid- IR bands)

Visible Bands

» Green band (Band2  0.52 - 0.60 μm)

Measures green reflectance  Vegetation

discrimination

» Red band (Band3  0.63 - 0.69 μm)

Measures Chlorophyll absorption  Plant

Species differentiation

Combined with Green Band shows land surface

as red-like

Cloud Detection Theory
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Cloud Detection Theory (cnt’d)

Near-IR Band (Band4  0.76 - 0.90 μm)

Determines soil moisture level 

Delineating water bodies and

distinguishing vegetation types

Mid-IR Band (Band5  1.55 - 1.75 μm)

Differentiation of snow from clouds

0 Cold (in the thermal bands)

Thermal IR Band (Band6  10.4 - 12.5 μm)

Thermal mapping to Brightness

Temperatures

Difference between 11 μm & 12 μm

highlights cloud boundaries
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Landsat 7 ETM+ ACCA
(Algorithm Outline)

Normalization

0 Bands 2-5 (Reflectance bands)

0 Band 6 (Thermal band)

Calibrated to blackbody Brightness Temperature

Calibration Constants

Normalization

Pass One

Pass Two

Landsat 7 Quantized 

Raw Data
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Landsat 7 ETM+ ACCA
(Algorithm Outline)
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Normalization

0 Extract the calibration

constants (LMIN , LMAX , d,

ESUN , s, K1, K2) from the

tables depending on the

information in the data file

headers

0 Calculate radiance (L ) for

captured data

0 Calculate reflectance ( ) for

band 2-5

0 Calculate temperature (T)

for band 6 only

Reflectance is a linear function

of the raw quantized data (Qcal)

Temperature is a non-linear

function of the raw data
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Landsat 7 ETM+ ACCA
(Algorithm Outline)

Pass One
0 Identifies clouds (produces Cloud Mask)

0 Minimizes errors of commission

Normalization

Pass One

Pass Two
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Landsat 7 ETM+ ACCA
(Algorithm Outline)

Classification Rules for Pass One [2]Classification Rules for Pass One [2]
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Landsat 7 ETM+ ACCA
(Algorithm Outline)

Pass Two
0 Defines ambiguous clouds

Thermal properties of clouds identified during Pass One are

characterized and used to identify remaining cloud pixels

Band 6 statistical moments (mean, standard deviation, skew, kurtosis)

are computed for clouds identified during Pass One

The 95th percentile becomes the new thermal threshold for Pass Two

Image pixels that fall below the new thermal threshold and survive the

first three Pass-One filters are classified as clouds
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00 Architectural ModulesArchitectural Modules

00 TestbedTestbed (SRC-6 and Cray-XD1) (SRC-6 and Cray-XD1)

Experimental Results

Concluding Remarks
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Top Hierarchy Module

band2

band3

band4

band5

band6

Mask2Pass Two

B2

B3

B4

B5

B6

Normalize
Mask1

Pass One
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Normalization Module
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Pass-One Module

Classification Rules for Pass One [2]Classification Rules for Pass One [2]
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Optimizing Hardware Resources Usage
(Linearization of the Normalization Function)
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Classification Rules for Pass One [2]Classification Rules for Pass One [2]

Optimizing Hardware Resources Usage (cnt’d)
(Algebraic Re-Formulation of Pass-One Filters)
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00 Architectural ModulesArchitectural Modules
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Experimental Results

Concluding Remarks
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Hi-Bar sustains 1.4 GB/s per port with 180 ns latency per tier

Up to 256 input and 256 output ports with two tiers of switch

Common Memory (CM) has controller with DMA capability

Controller can perform other functions such as scatter/gather

Up to 8 GB DDR SDRAM supported per CM node

SRC Hi-Bar
TM

 Based Systems

Storage AreaStorage Area

NetworkNetwork
Local AreaLocal Area

NetworkNetwork

Wide AreaWide Area

NetworkNetworkDiskDisk

CustomersCustomers’’ Existing Networks Existing Networks

PCI-XPCI-XPCI-XPCI-X

MAPMAP®®

SRC-6SRC-6

MAPMAP

μμPP

MemoryMemory

SNAPSNAP™™

μμPP

MemoryMemory

SNAPSNAP

Gig EthernetGig Ethernet

etc.etc.

CommonCommon

MemoryMemory

ChainingChaining

GPIOGPIO

CommonCommon

MemoryMemory

SRC Hi-Bar SwitchSRC Hi-Bar Switch

Source: [SRC]
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SRC Reconfigurable Processor

Source: [SRC]
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Cray XD1 System Architecture
(One Chassis)

RapidArray components in a Cray XD1 chassis

FPGA and 2nd RAP are on Expansion Module

Compute

12 AMD Opteron 32/64

bit, x86 processors

High Performance

Linux

RapidArray Interconnect

12 communications

processors

1 Tb/s switch fabric

Active Management

Dedicated processor

Application Acceleration

6 co-processors
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Outline

Objective

Motivations

Cloud Detection and Landsat 7 ACCA

Implementation Approach

Experimental ResultsExperimental Results
00 Detection AccuracyDetection Accuracy

00 MeasurementsMeasurements

00 PerformancePerformance

Concluding Remarks
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Detection Accuracy
(Software/Reference Mask, Hardware Masks)

Software/Reference Mask

Band 2 (Green Band) Band 3 (Red Band) Band 4 (Near-IR Band) Band 5 (Mid-IR Band)

Band 6 (Thermal IR Band) Hardware Floating-Point Mask

(Approximate Normalization)

Hardware Fixed-Point Mask

(Approximate Normalization)
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Detection Accuracy (cnt’d)
(Approximate Normalization and Quantization Errors)

Approximation Error

(0.1028 %)

Hardware Fixed-Point (12-bit) 

Error (0.2676 %)

Hardware Fixed-Point (23-bit)

Error (0.1028 %)

Hardware Floating-Point Error

(0.1028 %)

Reported Error (1.02 %)

 by Williams et al. [2]
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Detection Accuracy over Water
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Detection Accuracy over Water
(Software/Reference Mask, Hardware Mask, Error Mask)

Band 2 (Green Band) Band 3 (Red Band) Band 4 (Near-IR Band) Band 5 (Mid-IR Band)

Band 6 (Thermal IR Band) Software/Reference Mask Hardware Floating-Point Mask

(Approximate Normalization)

Approximation Error

(0.9102 %)
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ACCA Resource Utilization

78 StagesLatency

36 (25%)MULT 18X18

23,005 (34%)Slice Flip Flops

20,885 (30%)LUTs

17,565 (51%)Slices

100 MHzSpeed

MAP Virtex-II 6000Platform

MAP-C Floating Point (Single-Precision) of

Pass-One

1184 StagesLatency

59 (40%)MULT 18X18

40,584 (60%)Slice Flip Flops

37,977 (56%)LUTs

31,117 (92%)Slices

100 MHzSpeed

MAP Virtex-II 6000Platform

MAP-C Floating Point of

Pass-One & Partially

Pass-Two

6 (4%)RAMB16

6 (4%)MULT 18X18

8.023 (11%)Slice Flip Flops

3,865 (5%)LUTs

4,623 (13%)Slices

100 MHzSpeed

MAP Virtex II 6000Platform

VHDL Fixed-Point (23-bit) of

Pass-One
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Multi-Node Measurements Scenarios on SRC-6

SRC-6SRC-6Gig EthernetGig Ethernet

etc.etc.

CommonCommon

MemoryMemory

SRC Hi-Bar SwitchSRC Hi-Bar Switch

PCI-XPCI-X

μμPPμμPP

MemoryMemory

SNAPSNAP

PCI-XPCI-X

μμPPμμPP

MemoryMemory

SNAPSNAP MAPMAP®®

FPGAFPGAFPGAFPGA

MAPMAP®®

FPGAFPGAFPGAFPGA

MAPMAP®®

FPGAFPGAFPGAFPGA

MAPMAP®®

FPGAFPGAFPGAFPGA

MPI
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Multi-Node Measurements Scenarios on Cray-XD1

P
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SRC-6  vs.  Intel Xeon 2.8 GHz
(Hardware-to-Software Performance)

Total Execution Time

43.02
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6.05

2.46 1.52
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8 Engines/Chip1 Engine/Chip

3.0175

6.035

12.07

4.20.384

4.010.762

01.521

Communication

Overhead (msec)

Processing Time (msec)Number of

FPGAs

ACCA on SRC-6

4.50.131.014

3.90.191.492

00.393.161

8 Engines/Chip1 Engine/Chip

0.67

0.75

4.580.086

4.490.095

Communication

Overhead (msec)

Processing Time (msec)Number of

Nodes

ACCA on Cray-XD1

Multi-Node Execution Time
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Concluding Remarks

We extended our previous effort [3] by:

0 Investigating the potential of using multi-node HPRCs for on-

board preprocessing

Landsat 7 ETM+ ACCA algorithm was selected to:

0 Determine an almost practical bounds on the potential

performance of HPRCs

0 Gain an insight into the system level programmability and

performance issues

We studied and characterized the scalability of the application:

0 On two of the state-of-the-art reconfigurable platforms, SRC-6

and Cray-XD1 at HPCL/GWU

The workload was distributed over all nodes using MPI:

0 We scattered the input five bands across all nodes, and

0 Gathered the resulting mask pixels from all nodes at the base

node
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Concluding Remarks (cnt’d)

The computation scalability on both machines was shown to be

close to ideal

0 The communication overhead was almost constant irrespective

of the number of nodes

0 The inherent parallelism of the application was fully exploited

A deviation in the overall scalability from the ideal was observed

and analyzed:

0 Overheads, such as communications, must be at a much lower

levels than what is accepted in conventional high performance

computers

The results also showed that:

0 We may not need very large machines that are characterized

with high overhead when HPRCs are used, which is a

requirement for on-board preprocessing
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SRC Software Environment
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Single-Node Measurements Scenarios on SRC-6
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Hardware Computation Throughput
(Hardware-to-Hardware Performance)

Computation Throughput 
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Cloud Detection: Example Satellites and Algorithms

Landsat 5

MODIS
ETM+
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Optimizing Hardware Resources Usage
(Linearization of the Normalization Function)
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Optimizing Hardware Resources Usage
(Linearization of the Normalization Function)
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Optimizing Hardware Resources Usage
(Linearization of the Normalization Function)
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Top-Level Architecture of the ACCA Algorithm
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Normalization Module
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Normalization Module
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Normalization Module (cnt’d)



El-Araby, GWU 50June 27, 2006ESTC 2006

Pass-One Module
(Optimizing Hardware Resources Usage by Algebraic Re-Formulation)
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Pass-One Architecture
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Test Bench
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Tester Architecture
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Image Reader and Writer

endfile(our_file)

Read_Data_Pixels

start_of_file<='1';

end_of_file <='0';

Start

F

Read_Header

T

start_of_file<='1';

end_of_file <='1';

data_out <= (others=>'0');

End End

Image-Reader

assert false report "Done Image Processing" severity failure;

(start_of_file = '1' ) and (end_of_file = '0')

End

Start

T

F

Write_Header

Write_word_of_pixels

clk_en = '1'

T

F

End

pgm_header_flag = '1'

T

F

End End

Image-Writer


